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MOLECULAR STRUCTURE OF GASEOUS HYDROGEN FLUORIDE POLYMERS 

Introduction 

The hydrogen fluoride system is of basic interest in the study of 

strong hydrogen bonds, but there has remained uncertainty about the struc

tures of the polymer species formed in the vapor. Because investigations 

by various methods, including an early visual electron diffraction study, 

have not yet led to agreement on the nature of the (HF) oligomers, it 

seemed worthwhile to re-examine the vapors of hydrogen fluoride by modern 

high-precision electron diffraction, which is well suited to the study of 

geometries of gaseous molecules in the pressure range of appreciable HF 

polymer formation. This chapter describes the experimental conditions, 

analysis of data, and results of HF studies conducted at nominal tempera

tures of -19 and +22 °C. The conclusions are compared with inferences 

based on data from other sources. 

Previous Work 

Anomalous physical properties attributable to oligomer formation in 

hydrogen fluoride vapor have been the subject of numerous experimental 

measurements (1-18) since 1881, when Mallet (1) discovered that at 30 °C 

and 745 torr the vapor density is about twice that expected for HF monomer. 

The available observations, however, have been interpreted (3-23) in terms 

of different models for self-association equilibria in the vapor, with the 

result that conflicting views concerning the masses and structures of the 

gaseous hydrogen-bonded aggregates persist. This state of uncertainty has 

been noted before by other authors (13,14,21,23). The purpose of this sec
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tion is to comment on some of the data in the literature and to emphasize 

that the model of Franck and Meyer (18), in which a cyclic hexamer predom

inates over dimer and trace quantities of (HF)^^2 chains, provides a- co

herent account of the physical properties of HF vapor. From this model it 

is found that under the conditions of appreciable association to be sought 

in the electron diffraction experiments, polymer species other than the 

cyclic hexamer may be expected to contribute negligibly to the diffraction 

pattern. 

1. General description of the vapor 

It will be convenient to introduce the notation of this section by 

writing the chemical formula for a sample of pure hydrogen fluoride vapor 

at equilibrium as a general mixture^ 

a^HF + a2(HF)2 + ... + aj(HF)j + ... + aj(HF)j 

The ay's are numbers of moles. Such a sample occupies a volume v, has 

density p, and exerts total pressure p not greater than the saturation 

vapor pressure p^. The total mass is then pv, and the composition is sub

ject to the constraints 

J 
^ ja. = pv/20.01 and a. ̂  0. (1) 
j=l J ^ 

An association factor x equal to the average molecular weight divided by 

20.01 g/mole may be defined as 

X = l28iJla.y (2) 

If the mixture behaves as an ideal gas, then 

Ja^ = pv/RT, (3) 

which allows x to be determined experimentally as 
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Xp = pRT/20.01p. (4) 

(The distinction between x and x^ will be retained for use in treating the 

vapor as a nonideal gas.) This ratio has been observed to reach values as 

large^ as 4.3. It is also observed that x^ is a strongly increasing func

tion of increasing pressure and of decreasing temperature; the dependence 

on p and T is to be explained in terms of some set of mobile equilibria 

among the various species present in the vapor. 

Regardless of whether the species (HF) _ is formed by a series of 

stepwise additions of monomer with equilibrium at each step 

K. i+1 
(HF)^ + HF (HF)._^^ i = 1,... ,j-l 

or by a single j-fold association 

jHF (HF)j, 

the detailed composition of the mixture at equilibrium depends on the val

ues of the equilibrium constants which relate the monomer and polymer 

fugacities and f. : 

1 " j^^i.i+l" 
Kj = f^/f i  =1 |K,  (5)  

^Considering only conditions of pressure and temperature well below 
the critical values p^ = 64.07 atm and T^ = 188 °C (16). At the critical 

point the ratio pRT/20.01p has the value 8.56, but the ideal gas law cer
tainly does not apply. Spalthoff and Franck (17, Tabelle 3) give a more 
realistic estimate of x in the vicinity of the critical point as approxi
mately 2 (2.08 at p/p^ = 0.86 and T/T^ = 0.98). Extrapolation of the 

empirical Eq. 5 of Jarry and Davis (8) to 188 ®C gives the similar result 
X = 2.04. It may be noted from Fig. 1 that the compressibility factor 
p M/RT p for the critical HF fluid apoears much less anomalous when reck-
c c c 
oned assuming an average molecular weight M = 2x20.01 than when the mono
mer weight M = 20.01 g/mole is used. 
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Fig. 1. Compressibility factors at critical conditions 
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The problem is to identify which species exist in appreciable amounts. At 

sufficiently reduced pressure, x^ approaches unity, which is proof that 

monomer is the principal component under such conditions. Likewise, if x 

exceeds 4 there must be large contributions from species higher than tet-

ramer. For a closer analysis, experiments of at least four different kinds 

must be considered as sources of relevant information concerning which 

species are negligible and which are not. Specifically, a description is 

sought which is in satisfactory accord with the available data on the fol

lowing: vapor densities, not only at low pressures (9), but also under 

near-saturated conditions; thermal properties, including thermal conduc

tivity (15), heat capacity (16-18), heat of vaporization (14), and entropy 

of association (14); infrared absorption band intensities (13,24); and 

dielectric polarization (12). Compatibility of such a description with 

electron diffraction data will be considered at length in a later section. 

In addition to data of the sorts just listed, there are also a few other, 

inconclusive observations to be discussed. 

2. Vapor densities 

Attention will first be given to the vapor density data available in 

the literature because it is in their interpretation that the most signif

icantly disparate opinions have arisen. 

For each species (HF)^^^ an ideal partial pressure may be defined; 

Pj = a^RT/v. (6) 

The density of the mixture is then given by 

p = (20.01/RT)%jPj. (7) 

An isothermal series of vapor density measurements gives a finite set of 
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points (p,p) lying along some curve. The inferences to be draî^m from such 

measurements depend on what sort of model specifying IjPj as a function of 

total pressure p is necessary to fit this curve. In the ideal gas approx

imation, is simply a polynomial in the monomer partial pressure P^. 

But because in practice the observed data points are limited in number and 

contain experimental scatter, and because the number of terms in the sum 

^jPj used to fit them may be freely chosen, a unique answer cannot be ob

tained from density data. It is, rather, only possible to compare likely 

models with experiment, and perhaps to find the simplest model which will 

account for the data. 

In the remainder of this section, the following special meaning will 

be attached to the word "model": A model will consist of an equation of 

state and a list of species (HF)^ assumed to exist (a^ >0). By a "de

scription" of HF vapor at some temperature will be meant a model, taken 

together with a set of numerical values for the parameters (equilibrium 

constants and nonideality constants, if any, needed to compute from 

the pressure p) appearing in the equations which govern the behavior of the 

model. 

Simons and Hildebrand (3) discovered in 1924 that their vapor densi

ties could be accounted for, within the rather broad limits of experimen

tal error, with the simple assumption of only monomer and hexamer in equi

librium; 6HF ̂  (HF)g. They were also able to correlate the earlier results 

of Thorpe and Hambly (2) with this model. Later studies (7,8) confirmed 

that the monomer-hexamer model provided an adequate account of association 

factors greater than about 1.3, but in more dilute vapor the densities 
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appear (5-7) to require the inclusion of polymers lower than hexamer, 

notably (HF)2. Nevertheless, considerable evidence (g. g., 12,13) has 

appeared in support of their ideas since Simons and Hildebrand first sug

gested that a hexamer might exist as the principal associated species and 

added the conjecture that this hexamer might be cyclic. 

Among the sources of evidence which has seemed to be at odds with the 

dominant-hexamer view is the low-pressure vapor density study by Strohmeier 

and Briegleb (9), whose meticulous experimental' work provided the most 

precise density data available for temperatures from 26 to 56 °C and pres

sures such that Xp < 1.9. These data overlap, without serious disagree

ment in general form, earlier results obtained by other workers (2-4,7); 

we are following Smith (13) and Maclean, Rossotti, and Rossotti (23) in 

choosing the data of Ref. 9 for further quantitative consideration. 

Briegleb and Strohmeier were led by an analysis (22) of their own 

density data to conclude that preferential cyclic hexamer formation was 

not indicated. There are, however, grounds for disputing the validity of 

their analysis. To fit the experimental results, Strohmeier and Briegleb 

adopted (22) a model including polymers of all possible sizes, with eight 

independent formation constants for j = 2 through j = 9, plus a ninth 

constant g for the ratio That is, they fitted each density 

isotherm with the series 

8 » ._q 
^jP = P, + I jKp: + Igj : *Kp], (8) 

J 1 j=2 j ^ j=9 ^ 

written in closed form as 
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Ideal gas behavior was assumed and was taken as the real root^ between 

0 and 1/3 of the total pressure equation 

(9) 

(9') 

Maclean, Rossotti, and Rossotti correctly assert (23, p. 1554) that the 

use of nine adjustable constants to fit each Strohmeier-Briegleb density 

isotherm is unwarranted. It indeed seems very unlikely that the nine 

parameters could be optimized to best fit the data according to a least 

squares criterion without some of the values turning negative. Aside 

from this, the results of the original analysis (22) have proved unworkable 

on at least two additional points. If the Briegleb-Strohmeier description 

is used to predict association factors at saturation, the dashed curve of 

Fig. 2 is obtained. Clearly this curve is not in reasonable agreement 

with experiment, and is worst within the temperature range 26 to 56 °C 

where the data from which it was derived were taken. Secondly, Franck and 

Meyer (18, p. 850) used the constants of Ref. 22 to compute the heat ca

pacity at 26 °C and 500 torr and obtained a result which was larger by 80% 

^According to Eq. 2 of Jarry and Davis (8), p^ is slightly greater at 

every temperature than 1/3 (22, Eqs. 7). In computations for the nearly-
saturated pressure region between 1/3 and p^, therefore, care must be taken 

to utilize the smaller of two real roots existing between 0 and p^. 
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than the experimental value. 

Smith (13) suggested that the low-pressure density data can be fitted 

satisfactorily using a monomer-tetramer-hexamer model in which the appre

ciable Kg found by Briegleb and Strohmeier (22, Fig. 5) is reinterpreted 

as a nonideality parameter for the monomer-oligomer mixture. He'also 

noted that tetramer exists in amounts perhaps too small, under most condi

tions, to be detectable except by spectroscopic means. The suggestion 

that nonideal gas behavior be allowed for is well taken, but Smith's for

mulation, with the constants given in his Appendix II, suffers from dif

ficulties similar to those described in the preceding paragraph, the worst 

being that it severely overestimates association factors when extrapolated 

to pressures near p^. (Below -15.35 °C, there is also a region of pressure 

near p^ in which Smith's total pressure equation has no real root, but it 

is admittedly unfair to expect that the van't Hoff equation given by 

Briegleb and Strohmeier for should realistically represent the nonide

ality at any temperature below 26 °C.) 

Maclean, Rossotti, and Rossotti (23) used graphical methods (25) to 

fit the Strohmeier-Briegleb density data with various models and found that 

a monomer-dimer-hexamer model, as well as more complicated ones, gave an 

acceptable fit. Of possible two-oligomer models a^HF + a2(HF)2 + aj(HF)j, 

best results were obtained with J = 6. Once the data were fitted with the 

monomer-dimer-hexamer model, the inclusion of terms corresponding to other 

species could give, not surprisingly, no conclusive additional information. 

Extension of the results to higher pressures and lower temperatures was not 

attempted. 
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To provide a basis for direct comparison of the merits of several 

simple models, parameters were optimized by fitting the Strohmeier-Briegleb 

density isotherms using straightforward Gauss-Newton iterative minimization 

of the standard relative errors 

where v is the number of adjustable constants in the model being considered, 

n is the number of experimental data points defining the isotherm at tem-

These least squares calculations were done using a digital computer which 

was capable of improving slightly on the results obtained graphically by 

Maclean, et al. Descriptions IV and V in Table 1 are for the same model 

and may be compared directly. Each isotherm was fitted individually; ther

modynamic constants (Table 3) were subsequently obtained by fitting van't 

Hoff straight lines to the independent results from the five temperatures. 

Qualitative effects of gas nonideality were apparent in calculations 

which incorporated a very crude allowance for departure from ideal gas be

havior. Nonideality of the monomer-polymer mixture was expressed in terms 

of one parameter in a scheme based on the prescription outlined by Armitage, 

Gray, and Wright (21, p. 1803) for a mixture of HF and (HF)g. Their sug

gestion uses the second-order virial equation for a gaseous binary mixture 

given by Guggenheim (26, Eq. 8.07.1): 

k=l 
(10) 

perature T, and 

^calc^^obs (EjPj)/pXp. (11) 

V RT 
= h 

(ai + ag)2 

(12) 

*1 + *6 P 
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which reduces to 

p = (1 + pxB^^/RT)(P^ + Pg) (12') 

when the simplifying assumptions are made that 

=66 ° GBll «16 - "»11 + ®66' • (f/ZiBll- <") 

The necessity for these assumptions is as stated by Armitage, et al. (21, 

p. 1803). With the same assumptions, the equilibrium condition using 

Guggenheim's fugacity expressions (26, Eqs. 8.08.8 and 8.08.9) becomes 

Pg = Kg(FP^)^/F, (14) 

where F is defined as 1 + pxB^^/RT. The working equations for the nonideal 

a^HF + ag(HF)g model are therefore 

p = FP^ + Kg(FP^)^, (15) 

F = 1 + (B^^/RT)[p + 5Kg(FP^)^], (16) 

and 

IjPj = [p + 5Kg(FP^)^]/F. (17) 

The product FP^ is obtained from Eq. 15 as the real positive root. Equa

tions 12'-17 were naively extended by analogy to cover the ternary mixture 

of dimer with monomer and hexamer: 

p = FP^ + K2(FP^)^ + Kg(FP^)^ (15') 

F = 1 + (B^^/RT)[p + + 5Kg(FP^)^] (16') 

IjPj = [p + K2(FP^)^ + 5Kg(FP^)^]/F (17') 

The derivatives of the difference 6 = [(JjPj)/px^ - 1] needed for the 

least squares calculation are 

36/3K = (FP^)j(j - 1 - c)/pXpF^ j = 2,6 (18) 

and 

36/3(B^^/RT) = -(IjPj)^/pXp. (19) 
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The symbol c in Eq. 18 is defined by 

c = [2K2(FP^)^ + 30Kg(FPp^]/(FjjP^). (20) 

Results from least squares calculations for a few simple models are 

summarized in Tables 1-3; descriptions by other authors, and their stand

ard errors of fit, are listed for comparison. There is no clear justifi

cation for preferring the Briegleb-Strohmeier formulation. Descriptions I 

and II, especially at the three upper temperatures. A model (VIII) anal

ogous to Smith's (III), but with dimer considered instead of nonideality, 

could not be optimized without getting negative values for K,. Unreason-

ably large values were obtained for -B^^/RT, and hence for association 

factors at saturation, if this nonideality parameter was varied in the 

least squares process. Description IX is an example. For Description VII, 

therefore, was held fixed at the Berthelot gas value (27, p. 187, Eq. 

16-15). The adjustable parameters in Models V-VII, then, were and Kg. 

Description V is simply a refinement of IV, as mentioned earlier. De

scription VI is for the model of Franck and Meyer (18) optimized to fit 

the density data; these results differ insignificantly from the pure ideal 

monomer-dimer-hexamer Description V. Additional comments on the Franck-

Meyer model appear in the next subsection. 

Association factors at saturation based on Descriptions V and VII are 

plotted in Fig. 2. Both curves are much more reasonable throughout the 

range -80 to +60 °C than is the dashed curve for Description II by Briegleb 

and Strohmeier. At temperatures above 60 "C the ideal monomer-dimer-hexa-

mer model cannot be expected to give accurate association factors near p = 

p^ because the vapor pressure becomes quite large and effects of nonideal-
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Table 1. Standard deviations o^, in percent, measuring quality of fit to Strohmeier-Briegleb density 

data by various models 

Description I II III IV V VI VII VIII IX 

Source a b c d e e e e e 

Model j =1,...,°° j=l. • •. j=l,4,6 j=l,2,6 j=l,2,6 j=l,...,°° j-1,2,6 j=l,2,4,6 j=l,6 
ideal ideal nonideal ideal ideal ideal nonideal ideal nonideal 

V 9 9^ 3 2 2 2 2® 3 2 

Temp. n 

26 °C 33 .36 .52 .47 1.77 .99 1.00 .78 h .25 

32 25 .58 .60 .45 1.65 .92 .93 .71 h .24 

38 22 .39 .44 .28 .52 .43 .45 .35 h .16 

44 18 .13 .19 .22 .13 .088 .093 .082 h .077 

56 15 .14 .16 .16 .21 .075 .074 .073 .077 .077 

^Briegleb and Strohmeier (22, Tabelle 1). 

^Briegleb and Strohmeier (22, Eqs. 7), 

^Smith (13, Appendix II), 

^Maclean, Rossotti, and Rossotti (23, Table 1). 

^Constants were derived in the present work by least squares; see Table 2. 

^Use of V = 9 was for convenience in computing o^; actually only 18 constants covered all five 

temperatures. 

was held fixed at the Berthelot gas value; and Kg were varied. 

^Results were rejected because calculations gave < 0. 
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Table 2. Equilibrium constants, nonideality parameters, and association 

factors for saturated conditions. For "(-m)" read "(10 

Square brackets denote values which are unacceptable. 

Temp. Descr. -B^^/RT 
^2 ^4 ^6 

x,[p,(T)] 

26 "C 1.55(--4) 2. 17(-10) 4.83(-15) 
32 1.21(-•4) 1. 03(-10) 1.25(-15) 
38 Ill .95(-4) 5. 36(-11) 3.40(-16) 
44 .74(-•4) 2. 84(-11) 9.63(-17) 
56 .46(-•4) 8. 63(-12) 9.10(-18) 

26 1.58(-4) 1.15(-14) 
32 1.20(-4) 3.16(-15) 
38 IV 1.00(-4) 8.91(-16) 
44 8.71(-5) 2.40(-16) 
56 5.75(-5) 2.34(-17) 

26 1.25(-4) 1.31(-14) 2.961? 
32 9.24(-5)  3.56(-15) 2.814» 
38 V 9.44(-5)  9 .27(-16)  2.675° 
44 8.23(-5)  2.50(-16) 2.539° 
56 v 5.12(-5) 2.52(-17) 2.293 

26 1.16(-4) 1.30(-14) 
32 8.59(-5) 3.52(-15) 
38 VI 8.90(-5)  9.13(-16) 
44 7.84(-5)  2.42(-16) 
56 4.97(-5) 2.27(-17) 

26 2.95(-5)C 1.02(-4) 1.15(-14) 3.191% 
32 2.77(-5)C 7.21(-5) 3.06(-15) 3.058° 
38 VII 2.61(-5)C 6.94(-5) 7.92(-16) 2.929^ 
44 2.45(-5)C 5.61(-5) 2.12(-16) 2.806° 
56 2.18(-5)C 2.80(-5) 1.99(-17) 2.580 

26 [<0] — — 

32 [<0] 
38 VIII [CO] 
44 [<0] 
56 5.02(-5) 3 .52(-12) 

rH 1 
00 o
 

26 [1.71(-4)] 6.21(-15) [5.077] 
32 [1.32C-4)] 1.76(-15) [4.542] 
38 IX [1.05(-4)] 5.01(-16) [4.140] 
44 [8.09(-5)] 1.51(-16) [3.723] 
56 r4.96f-5) l  1.59f-17) r3.143l 

= nonideality parameter in Smith's model = of Ref. 22. 

^Smoothed values of Fig. 2. 

'^Berthelot value, not varied. 
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Cojnpm\ison pf_thermodynamic_pa%ainet^s 

Description II III IV V VII 

Source of constants a b c d d' 

-AH^ 2' kcal/mole 7.9 6.4+0.9® 5.3±2.7 7.9±3.4 6.7 

-AS^ 2» eu 43.8 38.8+3.0 36+9 45+11 39 83.20 

-5AS^ 2 219.0 178 223 195 

-AH. , kcal/mole 5.8-8.2 6.7 ' 
1,1+1 

-ASi eu 32.7-42.3 39 12.80 

-5AS. 163.5-211.5 195 
1,1+1 

-AIL ,, kcal/mole 40.0 40 40.6±0.9 41.1+1.1 41.7+0.8 40.2 
X J D 

(-AH^ )/6 6.67 6.7 6.76 6.85 6.94 6.70 

-AS eu 200.5 199 199.3+3.0 200,6+3.5 203.0+2.6 199 

^Briegleb and Strohmeier (22, Tabelle 2) . 

^Sinith (13) . 

^Maclean, Rossotti, and Rossotti (23, rederived from Table 1). 

^This work. 

^Franck and Meyer (18, Tabelle 5). 

^Hu, t\Tiite, and Johnston (14, Eqs. 11,12). 

^Uncertainties (99.73% confidence) were reckoned from scatter in log K vs. T ^ plots. 
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ity cannot be neglected. At very low temperatures (below -30 °C) the 

theoretical curves may be slightly too high, reflecting a small difference 

between vapor pressures given by Eq. 1 of Jarry and Davis (8) and observed 

pressures (28). Possible errors in the circled experimental points and 

the significance of the point located by the cross in Fig. 2 are discussed 

under "Thermal properties." The need for better experimental data on 

large x^ values is apparent in Fig. 2. It would be particularly interest

ing to examine accurately the saturated vapor below -50 °C to see whether 
• _ -

or not Xp values larger than 5 can actually occur. 

In view of the crude approximations made in treating nonideality, 

only limited quantitative significance can be attached to the results of 

Description VII. It is enough to point out that association factors at 

saturation are quite sensitive to the effect of nonideality, while the 

hexamer thermodynamic parameters are not and the dimer AH and AS are mod

erately sensitive, but are subject to rather large uncertainties. The 

dimer mole fraction implied by the nonideal gas Description VII is always 

less than that computed from Description V, the ideal monomer-dimer-hexa-

mer mixture. Accordingly, taking Description V as giving generous esti

mates of dimer mole fraction, it is found that dimer never exceeds 6.5 

mole percent in saturated vapor below 56 °C. Furthermore, the largest 

dimer contribution to an electron diffraction f(r) peak will not exceed 

3.5% at 24 °C and below, provided that the association factor is at least 

2.0 and the hexamer is cyclic. 

In summary, careful consideration of the available vapor density data 

has led to the conclusion that although minor improvements in representa-



www.manaraa.com

Fig. 2. Association factors for saturated conditions. 
Experimental points denoted by squares, triangles, and circles are 
from Refs. 3, 4, and 8, respectively. The curves represent values 
predicted according to Descriptions II, V, and VII as specified in 
the text and Tables 1-3. Values of p^ were reckoned using Eq. 1 

of Ref. 8. The point marked by the cross is discussed on pp. 22-23. 
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tion of the data might attend use of more complicated models, no necessity 

to consider appreciable amounts of species other than HF, (HF)„, and (HF). 
Z 6 

at temperatures not above 56 °C has been substantiated in prior density 

studies. In what is believed to be the first attempted demonstration that 

one model can be employed at all pressures up to p^ and all temperatures 

up to at least 56 °C, it has been shown that a scheme involving only mono

mer, dimer, and hexamer gives the most satisfactory account to date of ob

served vapor densities throughout this p-T region. The existence of other 

species such as (HF)^ ̂  is possible, but amounts large enough to contribute 

appreciably to macroscopic properties such as vapor density have not so 

far seemed necessary. 

3. Thermal properties ^ 

Franck and co-workers collected data on the thermal conductivity (19) 

and heat capacity (16-18) of associated HF vapor. The results were ac

counted for by a model in which the cyclic hexamer is favored, but which 

also includes a distribution of chain species in minor amounts. The 

assumed system of equilibria among chain polymers is essentially the 

Briegleb-Strohmeier model simplified by assuming the same equilibrium con

stant for each monomeric addition step. That is (for chains only), 

Pj/Pj = Kj = K^"^. (21) 

In addition to noting that heat capacities computed from the Briegleb-

Strohmeier array of constants could be in error by 80%, Franck and Meyer 

further showed (18, p. 579) that the simplified chain-only model could not 

be made to fit the heat capacities observed at 26 °C; this conclusion pre

sumably holds for lower temperatures and for at least some moderate range 
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above 26 °C as well. 

The cyclic hexamer invoked to account for the thermal data was thought 

to derive its special stability from the possibility of ring formation 

from six-membered chains at a very small cost in entropy of ring closure. 

(Compare AS^ g with 5AS^ ^ or 5AS^ in Table 3.) The relative dominance 

of the 6-ring then diminishes with increasing temperature. 

The model of Franck and Meyer appears to have merit beyond its ability 

to account for thermal data. In the temperature region below 26 "C, which 

is of interest in the present electron diffraction study, the model reduces 

to a monomer-dimer-hexamer mixture, with dimer a minor contributor and 

other acyclic chains completely negligible. It has already been sho;fn that 

such a three-species scheme is capable of fitting the high-precision vapor 

densities quite well, with thermodynamic parameters derived from such a fit 

differing insignificantly from those found by Franck and Meyer (18, Tabelle 

5). 

It is noteworthy here that the average entropy of association (16.0 eu 

in saturated vapor at 292.61 °K) computed by Franck and Meyer is in good 

agreement with the experimental value 17.53 eu obtained by Hu, l^ite, and 

Johnston (14). This is in contrast with a much less satisfactory value 

(26.93 eu) computed by the latter investigators using a pure monomer-

hexamer model. It must also be noted that in their association entropy 

calculation (result 20.2 eu) purporting to show preference for a chain-

distribution model, Hu, et at. relied on AS values (last column of Table 3) 

which are not comparable with values found by any other workers. It is 

therefore concluded that the Franck-Meyer model does not conflict with the 
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experimental results of Ref. 14. 

Hyman and Katz (29, pp. 53-54) have called attention to the discrep

ancy between the heat of vaporization obtained calorimetrically by Hu, 

White, and Johnston (14) and results derived from vapor pressure data by 

Jarry and Davis (8), who were themselves aware that Fredenhagen's earlier 

values (4) were considerably larger than their own. There is also an 

appreciable discontinuity (8, Fig. 3) between association factors measured 

by Jarry and Davis for saturated vapor above the normal boiling point and 

those previously determined at lower temperatures by others. Because the 

vapor density enters the Clapeyron equation used to find from the 

vapor pressure curve, therefore, it seems possible that the source of the 

discrepancy is an error in the density measurements of Ref. 8, perhaps due 

to the presence of excess HF as a condensed phase in the vapor sampling 

vessel. The very description (8, p. 601) of the experimental procedure 

explicitly suggests that liquid HF "spray" was present in the vapor con

tainer prior to isolation and weighing; no mention is made of any attempt 

to detect incomplete drainage of liquid from the vessel in the allotted 

five minutes.3 Serious (>10%) errors in the measured densities would have 

2 
resulted from as little as 0.5 mg/cm coating the interior surface of the 

vapor container, and any such persistent excess would have been subse

quently pumped into the weighing vessel along with the actual vapor of 

interest. 

In any case, the heat of vaporization at 292.61 °K found by applying 

^Strohmeier and Briegleb (9, p. 665) took elaborate precautions to 
assess this sort of error in their low-pressure experiments. 
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the Clapeyron equation to the empirical vapor pressure Eq. 2 of Jarry and 

Davis is brought into excellent agreement with the calorimetric value 

1789.89 cal/20.01 g if the association factor 3.763 used originally is 

replaced by the value 3.342 taken from the solid curve of Fig. 2: The 

corrected result is 1806 cal/20.01 g, while the original calculation gave 

1608. The value needed to give essentially exact agreement is 3.380; 

this point is marked by a cross in Fig. 2. 

4. Infrared absorption intensities • 

D. F. Smith has been given due credit (29, pp. 55,59; 12, p. 15) for 

his very lucid work (13,24) on the infrared spectra of HF and DF polymers. 

It is now a simple matter to point out that his conclusions are in accord 

with the model of Franck and Meyer; He found a predominating hexamer, 

along with dimer in smaller amounts and a tetramer in quantities likely to 

contribute little to the nonspectroscopic properties of the vapor. 

5. Dielectric polarization 

Dielectric polarization measurements by Magnuson (12) have furnished 

strong evidence for the cyclic nature of whatever polymers predominate. 

These results do not agree with the earlier work of Oriani and Smyth (11), 

but were obtained with allowance for departure from ideal gas behavior and 

with precaution against spurious effects due to HF adsorbed on the walls of 

the experimental vessel, and therefore seem to be definitive. 

6. Other evidence 

X-ray diffraction (30) has shown that crystalline HF consists of in

finite planar zigzag chains. From this it might be argued that oligomeric 
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chains, of various lengths, are to be expected in the vapor. It seems 

equally reasonable to expect, however, that if HF indeed prefers to form 

endless chains, it would do so in the vapor by cyclization. 

The previous electron diffraction study (10) of gaseous HF polymers 

showed, by detecting several diffraction rings corresponding to an inter-

nuclear distance of ~2.5 Â, that some sort of hydrogen-bonded aggregate 

persisted long enough after exiting the sample nozzle to be detectable in 

a diffraction experiment. Not enough data of sufficient accuracy were 

available, however, to firmly establish the additional structural conclu

sions which were drawn. The value 140 ±5° reported for the mean FFF 

angle in the polymers, particularly, is compatible with neither a hexagonal 

structure nor, as will be shown, with the new electron diffraction results 

obtained in this laboratory. 

A search (31) of the ultraviolet wavelength range do^m to 1500 A 

disclosed a featureless temperature-dependent absorption between 54,000 

and 67,000 cm . The fact that no discreet bands were found was inter

preted as "a good reason to think that there are no, or very few, cyclic 

FgHg molecules in the associated vapor," but no further justification for 

this conclusion was given. 

Nuclear magnetic resonance data (32) were recently surmised to be not 

Incompatible with the existence of a lone cyclic six-membered polymer in 

the vapor. 

There seem to have been no fruitful attempts to interpret quantita

tively the free-polymer infrared absorption frequencies or to study the 

gaseous oligomers by Raman, microwave, or mass spectroscopy. 
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7. Summary 

It now seems that all of the reliable physical evidence considered 

here is in accord with the following essential points. The principal 

constituents of HF vapor are monomer, dimer, and hexamer, and the amount 

of dimer is limited. The hexamer is very probably cyclic. The existence 

of other oligomers is likely, but in concentrations which are, for most 

nonspectroscopic experimental purposes, negligible by comparison with the 

monomer-dimer-hexamer total. 

Experimental Procedure 

Electron diffraction experiments for this study were conducted with 

intent to obtain structural data for gaseous hydrogen fluoride in as high

ly polymerized a form as was feasible. Accordingly, diffraction patterns 

were recorded using relatively large sample pressures to favor a high 

degree of association in the specimen beam. Data on the temperature de

pendence of the diffraction pattern were also collected to furnish clues 

to whatever changes might occur with changing association factor. 

In the problem at hand, the conventional index of resolutio'n R which 

measures experimental efficiency is not separable from structural (distance 

multiplicity) and concentration unknowns which have to be determined from 

the experimental data. Therefore R was initially fixed at the ideal value 

1.0 as a working assumption. Attention was then given in the experimental 

work and data analysis, however, to possible pressure-related and other 

effects capable of influencing R and thence the structural conclusions 

derived. 
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1. Apparatus and materials 

Two series of electron diffraction photographs of HF vapor were made 

using an apparatus described elsewhere (33,34). In order that the specimen 

beam have as large a proportion of the heavier polymeric species as possi

ble, a valved sample reservoir containing liquid HF was connected directly 

to the inlet line; the effective sample pressure upstream from the nozzle 

was therefore as near to the saturation vapor pressure as could convenient

ly be arranged. During the first series of experiments the sample contain

er and injection line were at the ambient laboratory temperature, approxi

mately 22 °C. For the second series, inlet tubing and sample reservoir 

were enclosed in a jacket through which a coolant (dried air chilled in a 

dry-ice slush) could be circulated. With this arrangement the sample cell 

and the upstream end of the injection line were held at approximately -19 

°C, while the nozzle end of the line was at about -37 "C. The temperature 

gradient was mostly due to thermal contact between the cooling jacket and 

the vacuum wall of the diffraction chamber, and could not be easily avoid

ed. The effect of a temperature decrease in the direction of sample flow 

was advantageous in these experiments, however, because it would tend to 

counter .the dissociative effect of the inevitable pressure drop in the same 

direction. 

Anhydrous liquid hydrogen fluoride was supplied in lecture bottles by 

The Matheson Company, Inc. Purity of the liquid phase was specified by the 

manufacturer to be at least 99.9 mole-percent. The material was used with

out further purification, except whatever may have incidentally attended 

filling of the sample cells by vacuum distillation at 0 °C. 
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The sample system used for the room-temperature experiments was made 

entirely of Kel-F (35, p. 60), excepting the nozzle tip, which was plati

num. The jacketed low-temperature injection system had Teflon gaskets at 

all joints and a nozzle tip of nickel, but was otherwise of Monel metal. 

The transfer line through which the sample cells were filled consisted of 

nickel tubing silver-soldered to Monel metal Hoke bellows valves which were 

fitted with Teflon gaskets. 

2. Recording diffraction patterns * 

-1 
Data in the interval 3.2 < s < 40.5 A were obtained from photographs 

made at nozzle-to-plate distances nominally 21 cm (long distance) and 11 cm 

(medium distance) with the usual radius-cubed rotating sector (33,36). 

Corrections for imperfections in the shape of this sector were made accord

ing to the argon-based calibration previously in routine use in this labo

ratory. Additional data for 2.1 < s < 14.9 were taken at the long distance 

using a radius-squared (quadratic) sector of 34 mm maximum radius. This 

sector was calibrated with neon, which is isoelectronic with HF, and the 

calibration curve agreed well with the results of an optical calibration 

done earlier (37). Background functions for the leveled quadratic-sector 

data were quite smooth, though not horizontal, throughout the s range from 

'^2.1 to ^15; specifically, these backgrounds were free of the troublesome 

bends sometimes encountered (36,38) in the vicinity of s = 6 or 7. 

Diffraction patterns were recorded on 4 % 5 in. Kodak Process Plates. 

An approximate correction (39) to remove the "edge effect" (40) which these 

plates exhibit (41) was applied through division of observed optical den

sities measured at distances y more than 24 mm from the center of a plate 
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2 
by [1 + 0.000125(y - 24) ]. All densities were then converted to values of 

exposure E according to the emulsion calibration equation^ 

E = D + 0.05D^. (22) 

Additional information concerning experimental conditions appears in 

Table 4. 

3. Extraneous intensities 

During at least one typical experimental run with each configuration 
0 

of the apparatus, a blank exposure was made in the absence of specimen flow 

to record extraneous intensities. Residual gas pressure during a blank 

-5 -5 
exposure was always between 10 and 4x10 torr. The extraneous intensity 

corrections indicated by ordinary blanks of the sort just described are in 

general reduced to trivial levels whenever very short exposure times are 

appropriate for the sample under study, and the blank plate intensities 

obtained here usually amounted to only about 0.2% of the total HF diffrac

tion pattern intensities; the largest value observed was approximately 

0.5%. In contrast, blank intensities as a percentage of the neon calibra

tion pattern intensities were an order of magnitude larger (2-5%). That 

is, they were comparable with values observed elsewhere in work with light 

noncondensible gases at low inlet pressures (40, Table V, 29 cm and 0^ 

data). 

Even though sample pressures greater than 1 atm were used, the dif

fraction unit's fast diffusion pumping system, aided by a large liquid 

nitrogen-cooled condensing surface 10 cm from the nozzle, was able to keep 

^See pp. 92-100. 
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Table 4. Experimental conditions for HF diffraction photographs 

Approx temp., °C 

Approx vapor pressure,^ torr 

Electron wavelength, A 

Nozzle orifice diam, mm 
' \ 

Beam current, yA 
\ • 

Plates taken at 

Date \ 

a(D), percent 

percent 

+22 

830 

.06015 

.20+.03 

.364 

Iowa State University 

1965 

Sector 

Nozzle-to-plate distance, mm 

Exposure time, sec 

Number of plates averaged 

Blank Intensity, 
percent of total 

Percent of blank intensity 
subtracted 

quadratic 

210.50 

.1 

7 

cubic 

210.54 

.8 -1 .0  

5 

cubic 

108.81 

2 

5 

,22-.33 .18-.21 .19-.28 

100 

.2 - .3 

.19-2.9 

100 

.11-.18 

•47-3.3 

0 

.09-.28 

.22-.92 

-19 

163 

.06015 

.28±.03 

.385 

University of Michigan 

1966 

quadratic cubic cubic 

209.15 209.23 106.99 

.5 5 12 

4 4 4 

.23-.52 .14-.30 b 

100 100 0 

.045-.072 .045-.060 .029-.031^ 

.099-.152 .146-.370 .069-.188 

Jarry and Davis (8, Eq. 1), 

'Blank was too light for accurate microphotometry. 

'See p. 31. 

^For one plate a(D) was 0.274, due to readings being taken at slightly unequal distances from 
the center of the pattern. 

to 
VO 

See p. 32. 
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the background pressure below 10 ̂  torr, as indicated by a hot-cathode 

ionization gauge which was monitored during sample injection. Still it 

may be supposed that the blanks described above underestimate the true 

extraneous intensities effective during an actual diffraction exposure, 

because the contribution of scattering by delocalized specimen gas was ab

sent. This contribution, for example, appears (40) to add approximately 

30-50% to the applicable blank intensities in the case of gases like N 

and 0^. An experimental attempt to assess the scattering to be expected 

in the present work from delocalized HF was made by a method similar to 

one outlined elsewhere (33, Footnote 7): A plate was exposed under the 

same conditions used for the long-distance, quadratic-sectored HF plates 

taken at -19 °C, except the electron beam was aligned to pass about 2 mm 

to the side of and slightly behind the exit end of the nozzle. This plate 

had a faint pattern similar in shape to the analogous exposure patterns 

taken with the electron beam directly intersecting the stream from the 

nozzle, but it was less than 3% as strong (t. e., 5-8 times the ordinary 

blank intensity). From these observations it seems reasonable to conclude 

that neglect of corrections for delocalized extraneous scattering in this 

study would result (42) in a diminution of not more than 3-4% in the indi

ces of resolution. Data obtained in the delocalized-scattering experiment 

also indicate that extraneous scattering contributes appreciably to the 

upsweep of backgrounds at larger scattering angles.^ 

^Cf. Fig. 3 and Refs. 36, 43, and 44. Recall that a correction for 
the edge effect was applied in the present study. 
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4. Reproducibility 

Two statistical measures of the reproducibility of the electron dif

fraction intensity measurements appear in Table 4. The reproducibility of 

a microdensitometric exposure determination made at a particular plate ra

dius, based only on the distribution of differences between readings taken 

on the right and left sides of center as a single spinning plate is scanned 

by the microphotometer, is measured by a(D): 

J 
2a^(D) - <") 

where k is the index of one plate in a set of K plates, plate k is read at 

J points on each side, and + E^^g^) for each j = 1,...,J. 

Included in a(D) are effects of microphotometer circuit noise and whatever 

contribution accrues from reading and E^^^^ at slightly different 

distances from the true center of the diffraction pattern. Values of a(D) 

between 0.01 and 0.06% are at the limit of precision attainable with the 

present photographic plates and densitometric equipment-® The fact that 

o(D) values were appreciably better, by about fivefold, for the low-temp

erature plates (Table 4) reflects only a change in microphotometer elec

tronics: A new phototube current preamplifier with improved linearity, 

stability, and response time was installed after the room-temperature 

plates were read. 

The quantity a(I) is the standard deviation measuring platewise repro

ducibility of the diffraction pattern shape. It is computed as the rms 

deviation for an individual plate from the mean intensities for an entire 

®Seepp. 80-88. 
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set. 

(24) 

where the mean exposure at radial point j is 

1 
E = K % (%k/Ck), 

k=l 
(25) 

and is the inverse of the weight factor for plate k 

(26) 
j=l 

The deviation 0(1) includes the small effect of a(D) noise, and contains 

additional contributions from plate-to-plate variations in backgrounds and 

]^rgest a(I) values for the -19 °C data compare favorably with the best 

results heretofore obtained with other specimen gases more likely to give 

reproducible scattering sources. At room temperature, a(I) values above 

3% occurred, but were due to fluctuations in the smooth background, not to 

short-range noise in the molecular interference pattern. The 0(1) values 

at the low ends of the ranges given for the 22 °C data are therefore con

sidered to be more nearly representative of the noise level which is of 

significance for purposes of structure determination. 

Reproducibility of the experiment can also be checked by observing how 

well the M(s) data for various s ranges match in the regions of overlap. 

The present HF data overlapped well; no gross discrepancies in M(s) ampli

tude, which would indicate inconsistent index of resolution or degree of 

association, were apparent. 

in the scattering''source due to pressure and temperature effects. The 
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Over-all confidence in the results from the two sets of photographs is 

enhanced by noting the extensive similarities, to be discussed below, in 

view of their persistence through not only a lowering of the temperature, 

but also the following: dismantling and relocation of the diffraction unit, 

use of samples from different manufacturer's batches, a change in container 

materials, alterations in the microphotometer detector circuitry, and lapse 

of a year's time between the sets of experiments. 

5. Preliminary reduction of data 

Leveled experimental intensities, reduced molecular intensities M(q), 

and radial distribution functions f(r) were obtained from the photographic 

exposure data by methods similar to those described elsewhere (45,46). The 

Degard damping factor used for computing experimental f(r) curves was 

[exp(-0.00125s^)]. 

Results and Discussion 

Results of the diffraction experiments are depicted in Figs. 3-5. The 

final experimental radial distribution functions appear in Fig. 5 as solid 

curves. Each f(r) curve consists of four peaks, none unambiguously resolv

able into components, which will be referred to hereafter by number from 

left to right. The diffraction data consisting of more than 6,000 inten

sity measurements can be satisfactorily explained with the assumption of a 

single species as the principal oligomeric constituent of the scattering 

vapor. That species has a skeleton of fluorine atoms which is in the form 

of a flexible six-membered ring. After least-squares refinement of the 

parameters defining such a model, the rms deviation between observed and 
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Fig. 3. Leveled experimental total intensities and background functions for 
hydrogen fluoride vapor at nominal temperatures of +22 and -19 °C. 
Data shown were leveled and corrected for sector asperities as 
described in Ref. 45. 
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Fig. 4. Reduced molecular intensity curves qM(q) for hydrogen fluoride 
vapor, calculated directly from the data of Fig. 3 
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Radial distribution functions. 
Solid curves are from Fourier inversion of experimental data. 
Dashed curves represent theoretical functions calculated from the 
assumption that the mean position of every hydrogen-bonding proton 
is approximately as sketched. The Af(r) curves show differences 
between the experimental results and the f(r) calculated for the 
best model. 
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calculated intensities was of the order of 2 parts per thousand. Differ

ences between theoretical and experimental f(r) curves are plotted at the 

bottom of Fig. 5 and do not exceed common levels of f(r) noise. 

Before discussing further the characteristics of the favored model it 

will be useful to outline some of the reasoning, including unfavorable as

pects of possible alternative interpretations, which led to its adoption. 

It should be^ borne in mind throughout the discussion that this type of 

analysis of a mixed vapor, for which neither composition nor possible 

structures of the components is known in advance, is more difficult and 

subject to greater uncertainty than conventional electron diffraction 

analyses. 

At the outset it was assumed that association factors found by vapor 

density measurements on saturated vapor could be used as rough estimates of 

upper bounds on molecular weight averages likely to be encountered in the 

diffraction experiments. Within the limits.of this assumption, but without 

geometric or mass conservation constraints, a mathematical model was used 

in the process of f(r) refinement until good, physically-interpretable f(r) 

results were obtained. The refinement proceeded at first by pure trial and 

error, and then by a cyclic process of adjusting the model, peak areas and 

all, to agree with the experimental f(r), followed by improvement of back

ground functions under smoothness and nonnegative f(r) criteria. This 

process of refining f(r) continued until implications concerning gross 

geometry of the oligomer fluorine skeleton became clear; only then was 

geometric consistency corresponding to a particular model introduced and 

the model refined by least squares fitting of the observed intensities and 
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by continued visual comparison of experimental and calculated f(r) curves. 

Because solution of the structure depends heavily on the experimental f(r) 

peak areas, it is gratifying that the development of the experimental f(r) 

curves converged to give physically-interpretable results in the absence of 

area constraints such as are tacitly assumed in routine work. Indeed, the 

areas of experimental Peaks 1-4 appeared sufficiently insensitive to the 

assumed model so that their uncertainties could be roughly estimated as 

<8%, <10%, 5%, and 30%, respectively. 

The observed areas of Peaks 3 and 4 at once suggest in a straightfor

ward way the qualitative conclusions to be drawn concerning gross geometry 

of the oligomer fluorine atom skeleton. In the low-temperature instance, 

the area of experimental Peak 3, which represents the hydrogen-bonded FF 

distances, is too large, relative to the maximum number j-1 of such dis

tances possible in an acyclic species of length j monomer units, for the 

data to be explained in terms of any mixture having a plausible association 

factor and containing only acyclic (chain-type) species. The data might be 

fitted with a chain-only model if the association factor were taken near 

7, but that is well above the largest reasonable value (t. e. , <5 even in 

saturated vapor at -50 °C). On the other hand, the -19 "C data are well 

represented by an equimolar mixture of monomer with cyclic hexamer. The 

association factor of this IHF + 1(HF), model is 3.5, a value not exceeding 
b 

the saturation limit at any temperature below +5 "C; at -19 °C the limiting 

value is s4.1. 

The third f(r) peak in the room-temp, instance is not large enough to 

show insufficiency of acyclic models by means of the same argument, but the 

similarities between the radial distribution functions for the two temper
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atures justify the assumption that the same sort of model should be appli

cable in both cases. Furthermore, the very similarity of the two polymer 

patterns (Peaks 2-4) is itself an important clue. The room-temp, curve of 

Fig. 5 is plotted on a vertical scale expanded 1.5 times so that the shapes 

of the two observed radial distribution functions can be readily compared. 

The shape of the polymer pattern changes very little on lowering the tem

perature by at least 41°, while the intensity of polymer features increases 

appreciably, as is also apparent in Fig. 4. This is the behavior to be 

expected of a single associated species mixed with monomer in temperature-

dependent proportions. If the polymers were principally open chains whose 

average length increased with increasing association factor, the tempera

ture difference of the diffraction experiments should be expected to pro

duce some significant dissimilarity between the distributions of long non-

bonded' (Peak 4) distances. That Peak 4 does not appreciably shift position 

with temperature is clear from the data. There is also no indication that 

the ratio of areas of Peaks 3 and 4 is temperature dependent, although a 

possibility of a modest dependence remains because of the uncertainties of 

the fourth-peak areas. Nevertheless, an extended planar zigzag chain model 

could not reasonably account for more than about 40% of the Peak 4 areas 

displayed in Fig. 5; the experimental uncertainties appear small enough to 

rule out such a model. 

The foregoing considerations show only that the diffracted-intensity 

data seem incompatible with models containing no cyclic species. Because 

of experimental uncertainties, there remains the possibility that appreci

able concentrations of chain-type species could exist together with cyclic 
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ones and not be discernible in the diffraction experiments. An important 

point to be noted here is that the arguments and conclusions of the preced

ing two paragraphs are strengthened rather than weakened if the true value 

of R should turn out to be less than unity owing to nonoptimum conditions 

such as multiple scattering in the comparatively dense sample jet. 

Deficiencies of area^ under Peak 1 raise the question of whether or 

not indices bf resolution below unity are indicated. Peak 3 of the low-

temperature f(r) curve furnishes an independent, internal estimate of the 

maximum possible cumulative lowering effect on R by all influences. An R 

value less than 0.84 does not seem reasonable, given that the area of the 

third low-temp, peak is only '^5% uncertain and that the association factor 

does not exceed 5. It seems inconceivable that contaminants could have 

been introduced into the experiment in sufficient quantity to affect this 

conclusion. Nevertheless, even if appreciable contamination could have 

occurred, the most plausible impurities (air, water, and SiF^) are incapa

ble of accounting for the 20-30% amounts by which the first peaks appear to 

be deficient. 

Theoretical fourth f(r) peaks for a few typical nearly-adequate trial 

models which were investigated are compared with experimental results in 

Fig. 6, where the inadequacies of these alternative models are evident. 

Characteristics of the model favored on the basis of the data are discussed 

below and are summarized in Table 5. 

^See Subsection 4, pp. 49-50. 
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Fig. 6. Comparison of low-temperature experimental f(r) results (solid 
curves) with functions (dashed curves) computed for several typical 
trial models considered. With each trial oligomer, the model 
incorporated the proportion of monomer needed to make the obs and 
calc peaks at 2.5 A match in area as nearly as possible, except with 
(a) the amount of monomer was taken as zero rather than the negative 
value which would have given a better fit to the 2.5 Â peak. The 
various experimental curves reflect slight influences in the 
direction of the respective trial models. These variations give 
rise to a degree of uncertainty which was taken into account in 
reaching the conclusions of this study. 
(a) planar zigzag hexameric chain with tetrahedral FFF angles 
(b) regular planar pentagon 
(c) regular planar hexagon 
(d) hexameric ring with 100° FFF angles and chair conformation 
(e) hexameric ring with tetrahedral FFF angles and boat conformation 
(f) hexameric ring with 102i° FFF angles and chair conformation 
Although the fit in (f) is satisfactory, equally acceptable results 
are possible with a boat conformation and 105i° angles, or with 
other models having averaged conformation intermediate between these 
two extremes. 
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Table 5 .  Structural parameters from least-squares fitting of intensities 

Temp, of sample cell + 2 2  °C - 1 9  °C 

Sample composition 4.2HF + (HF), l.OHF + (HF)g 

Association factor 1 . 9 6  3 . 5 0  

r (0) [f-H lb]* 0 . 9 7 3 ± . 0 0 9  Â  0 . 9 7 3  . 0 0 9  A  

Ar 0 . 0 4 o ± . 0 0 9  Â  0 . 0 4 o ± . 0 0 9  A  

r^CO) [F^F,]' 2 . 5 3 5 ± . 0 0 3  2 . 5 2 5 ± . 0 0 9  A  

tVal' 0 . 1 0 1 ± . 0 0 3  Â  0 . 0 8 9 ± . 0 0 3  A  

r^(0) [F^-.-Fj]® . 3 . 8 8  ± . 0 6  A  3 . 9 4  ± . 0 5  A  

0 . 3 6  ± . 0 6  A  0 . 3 9  ± . 0 6  A  

TgCO) [Fj^-'-F^]® 4 . 4 0  ± . 1 1  A  4 . 3 7  ± . 1 4  A  

0 . 3 0  ± . 1 0  A  0 . 3 3  ± . 0 8  A  

Anomalous protons^ 34% 23% 

Dimer contribution® <3.5% <0.6% 

^Shortest FH distance in the polymer. 

^Increase in above distance over monomer bond length. 

^The r (0) and & notation is as in Ref. 50. 
g m 

better f(r) fit is obtained if this distance is taken as 2.531 Â. 

^Based on assumption of chair-type conformation. 

^Deficiency in Peak 1 and surplus in Peak 2, percent of total hydrogens 
in sample. 

^Contribution to polymer M(s), estimated from data in the literature. 
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1. Composition 

The readily apparent enhancement of the molecular scattering features 

(Fig. 4) and f(r) peak areas (Fig. 5) which results from lowering the 

sample temperature is necessarily interpreted in terms of an increase in 

the degree of association, rather than a change in R associated with the 

reduction in sample pressure from the large value used at 22 °C; this 

conclusion follows from quantitative consideration of the f(r) peak areas. 

For each experimental temperature. Table 5 gives the proportions of monomer 

and cyclic hexamer deduced in fitting of the data. The corresponding asso

ciation factors are both plausible values. Moreover, both are large enough 

to justify the neglect of aggregates other than the cyclic hexamer in ana

lyzing the data, because the expected dimer contributions® are at or below 

the level of noise in f(r) and uncertainties in indices of resolution. 

2. Hydrogen-bonded fluorine-fluorine distances 

The dominant features of the diffraction pattern correspond to the 

2.5 A hydrogen-bonded FF distance, to be referred to hereafter as F^Fg. 

This distance is well defined by the data and is in substantial agreement 

with the distance found in crystalline HF by x-ray diffraction (30). The 

mean distance and its vibrational amplitude may be slightly greater at the 

higher temperature. 

®An examination (pp. 1-25) of the literature disclosed no compelling 
evidence for the existence, in vapors at equilibrium, of any other polymer
ic species which could make larger contributions. Cf. specifically p. 17, 
and also Abb. 12 of Ref. 18. 
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3. Non-hydrogen-bonded distances and configuration 

The fourth f(r) peaks consist mostly of unresolved and F^F^ com

ponents smeared out by large amplitudes of vibration. Near-zero restoring 

forces for F^F^F^ angles are consistent with theoretical predictions (47, 

Fig. 2). 

The average F^F^ distance corresponds to an F^FgF^ angle of ~104°, 

which is significantly smaller than the 120.1° angles found in the crystal 

structure (30), and which clearly disagrees with the value 140 ± 5° re

ported in the earlier electron diffraction study (10) for the apparent FFF 

amgle. In view of the large vibrations involved, sizable shrinkage effects 

(48) may be expected. It is possible that in the equilibrium configuration 

the ring of fluorine atoms is planar, with FFF angles the same as those 

found in crystalline chains. Tne amount of shrinkage necessary to reduce 

the apparent angle from 120 to 104° is of the order of only 9%, and shrink

ages exceeding 3% have already been observed for comparably large distances 

in the presumably much more rigid structure (49). Although the hexa-

meric ring appears more "cyclohexane-like" than "benzene-like" in the mean 

distances it displays, insufficient information is available to distinguish 

boat, chair, or other conformations. It is probable, however, that a broad 

continuum of conformations is swept through as the exceedingly flexible 

ring vibrates. 

Nonbonded FH distances greater than 2 Â and all HH distances give 

minor contributions buried in the f(r) peaks and cannot be deduced directly 

from the diffraction data. In the data analysis, approximate values for 

these distances were reckoned from the geometry of the fluorine skeleton 
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and were then formally included in computations to give consistent f(r) 

peak areas. The distance values used have no experimental significance, 

and errors therein do not appreciably affect the experimental outcome. 

4. Distribution of fluorine-proton distances less than 2 A 

Structure parameters for the monomer were taken from the literature 

(50,51) and were not varied in the analysis. The monomer FH internuclear 

distance contributes to f(r) Peak 1; subtraction of the monomer contribu

tion leaves a component (to be called Peak lb) 'representing a slightly 

elongated (see Ar in Table 5) FH distance. The mean amplitude for the 

residual polymer component lb does not differ from that = 0.0652 of 

the monomer by more than the experimental error. 

Relative to the expected^ equalrmultiplicity contributions to Peaks lb 

and 2 by every proton in the oligomer structure, experimental Peak 1 is 

deficient in area by 34% at 22° and by 23% at -19°, while an apparently 

compensating amount of excess area appears in each case under Peak 2. If 

this area shift is genuine, the implication is that the average oligomer 

structure contains a sizable, temperature-dependent fraction of protons 

located in the region of space between two fluorines at a distance well 

beyond 1 A from the nearest fluorine neighbor. According to this interpre

tation, Peak 2 would consist of three components. Unfortunately, an unam

biguous resolution is not possible. Qualitatively, however, the center of 

gravity of the excess contribution to Peak 2 appears to be at more than 

half the F^Fg distance. This would imply large protonic excursions away 

^See dashed curves of Fig. 5. 
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from internuclear axes, and the observed anomalous peak area behavior 

is perhaps consistent with the existence of a low-lying secondary minimum 

in the potential energy field in which a H-bonding proton moves. In this 

connection it may be mentioned that spectroscopic properties of hydrogen 

bonds are not yet well understood and that large, unexplained temperature 

effects on infrared spectra have been reported previously (52,53). A re

lationship between the "tetramer bands" reported by Smith (13) and the 

"proton shift" under consideration here could conceivably exist, but has 

not been investigated. Not all aspects of the infrared and Raman HF crys

tal spectra have been accounted for (54), nor were the hydrogens located 

definitively in the x-ray study (30). 

The results concerning shifts of area from Peak 1 to 2 are accepted 

with reservation because it is not impossible that experimental or inter-

pretational complications are responsible. Attempts to devise plausible 

alternative explanations, however, have failed, leaving at least a strong 

possibility that, on the average, some of the FH bonded distances are se

verely stretched. If such is indeed the physical reality, the present 

experimental findings form an insufficient basis for attempting a theoret

ical explanation, but serve to underscore a need for further research into 

the question of how hydrogen-bonding protons are spatially distributed. 

Conclusion 

Electron diffraction does not by itself lead unequivocally to a unique 

solution for composition and molecular structure in self-associated hydro

gen fluoride vapor, but the data are compatible with a model in which a 

cyclic hexamer exists as the predominant aggregate species. A similar 
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statement also applies to a body of physical evidence from other sources, 

which has been satisfactorily rationalized in terms of proposals made by 

Franck and Meyer (18). Taken together, the diffraction observations and 

data in the literature are mutually augmentative and strongly favor a ring-

hexamer theory. Models consisting mainly of open-chain species, meanwhile, 

appear incapable of being brought into satisfactory accord with experimen

tal observations. The dimer (24) could not be detected in this study, but 

would perhaps be observable in a room-temperature electron diffraction 

experiment if the working HF pressure were reduced to "^200 torr. 

Structural features of the hexameric rings are summarized as follows: 

The hydrogen-bonded FF distances are comparable with those found in the 

crystal. Mean FFF angles found by electron diffraction are roughly 16° 

smaller than those in crystalline chains, but in view of huge vibrations of 

an extremely flexible F-atom skeleton, the equilibrium angles do not nec

essarily differ from 120°. There is some indication that the distribution 

of protons in the polymer structure is not adequately describable in terms 

of a simple off-center placement of each proton on the internuclear axis 

between the two nearest fluorine neighbors, nor in terms of any one-dimen

sional oscillator. 
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AZEOTROPES OF HF WITH N2O2 AND NOF 

Introduction 

Seel, Birnkraut, and Werner (55) reported the synthesis of two new 

compounds by the reaction of liquid NOCl with HF in excess HF solution at 

-20 to -30 "C. Flat halts were observed at 68 and 95 "C in the bp vs. 

volume distilled curve for the reaction mixture; distillate collected 

during each halt could be repeatedly redistilled at the same boiling point 

without change in composition. Analyses by wet-chemical methods for nitro

gen as NO and for fluorine gave results consistent with the formulas 

NOF(HF)g and NOF(HF)g for the fractions boiling at 68 and 95 °C, respec

tively. To the latter material could be added either HF or NOF, and the 

original fraction remained recoverable by normal distillation. It was 

later discovered (56), however, that the higher-boiling fraction suffered 

loss of HF in a vacuum, leaving an NOF-enriched residue of composition 

corresponding to N0F(HF)2 ^. 

Seel and co-workers concluded that the three substances thus discov

ered were more or less stable complexes of HF with NOF. The question of 

molecular structure in such complexes was of sufficient intrinsic interest 

to warrant the undertaking of an experimental structure investigation. A 

study of the vapors by electron diffraction (e. d.) seemed appropriate 

because the formulas indicate reasonably small numbers of atoms per mole

cule and the vapor pressures lay in the convenient working range for e. d. 

experiments. This chapter concerns a series of diffraction measurements 

made to elucidate the nature of distillates from the NOCl-HF reaction mix

ture. 
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Partial results of work initiated in this laboratory have been report

ed previously (35). The reaction products have also been studied by Siegel 

(57): Extensive evidence from infrared, distillation, and wet-chemical 

analyses indicated that the 68° and 95° distillates are azeotropic mixtures 

instead of distinct molecular complex species. The 68° fraction appeared 

to be a maximum-boiling azeotrope having composition + (12.6 ± 0.2)HF. 

No band attributable to NOP appeared in the infrared spectrum of the vapor, 

and an identical substance could be synthesizeâ by simply condensing pure 

NgOg and HF together in the same container in appropriate proportions. 

Siegel also found that the amount of 68° material produced in the NOCl-HF 

reaction diminished as the concentration of contaminants in the reactants 

was reduced. Production of the lower-boiling fraction could then be ex

plained by either the known presence of up to 5% impurities as oxides of 

nitrogen in commercial NOCl or the reaction of NOF with water, which is 

known to give below 0 °C. The material distilling at 95° seemed to be 

an azeotrope containing HF and NOF, plus a smaller amount of NgO^. If the 

formula is written as + agHF + NOF, analytical results obtained by 

Siegel and by Seel, et al. place the point (a^,a2) within the enclosed 

region of Fig. 7. Finally, Siegel's experiments indicated that vacuum dis

tillation results in loss of HF from both the original 68°- and 95°-boiling 

materials. 

The e. d. study to be described furnishes independent information from 

which can be draw conclusions about the validity of the conflicting views 

on molecular species extant in the vapor phase. Unconventional aspects of 

the data analysis are also of interest. 
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Experimental 

The materials reported to be NOF(HF),, NOF(HF)-, and NOF(HF)„ ^ will 
O j  ̂» J 

for convenience be respectively designated hereafter as Substances I, II, 

and III. Two samples each of Substances I and II and one sample of III 

were furnished in sealed Kel-F tubes by Prof. Seel; diffraction photographs 

were made using the Iowa State University apparatus (33) . Seals were bro

ken and the Kel-F containers were attached to the diffraction unit inlet 

line under a dry argon atmosphere. * 

Photographs of the first sample (Ila) of II, and early plates of the 

first sample (la) of I were made using an inlet line of stainless steel and 

brass for injecting the vapors into the diffraction unit. Results obtained 

with this injection system could not be regarded as unambiguous because of 

a possibility that reaction with the walls of the sample system had decom

posed .the complexes of interest. Injection equipment consisting only of 

inert materials, namely Kel-F, nickel, Monel metal, and platinum, was 

therefore used to obtain photographs of the remainder of the la sample, and 

of fresh samples of all three substances. 

It should be kept in mind that the vapors introduced into the diffrac

tion chamber were those found above a liquid at the ambient laboratory 

temperature, not at the liquid's normal boiling point. 

Analysis of Data 

The basic theoretical expressions and methods of data reduction were 

similar to those described elsewhere (38,45,46,50). Parts of the analysis 

were facilitated, however, with the use of an intensity-matching least 

squares computer program which seeks a best fit by adjusting the propor-



www.manaraa.com

Fig. 7. Implied limits of composition for Substance II (bp 95 °C). 
Analytical results obtained by Siegel and by Seel, et al. are 
compatible with the formula ̂ a^NgO^ + agHF + NOF, where 

(a^.ag) is any point within the enclosed region. 
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tions of components in a mixture, given structural parameters for the com

ponent molecules and some starting guess at the composition. The applica

ble formalism is as follows.^ 

For a vapor which is a mixture 

*1^1 + *2^2 +••••'" SjCj + ... + ajCj 

of J compounds in mole-proporcions specified by the ay's, the resultant 

electron diffraction leveled intensity is computed from the reduced molecu-

» lar intensity functions for the individual components. If for the single 

species we define 

Aj(s) = ll(Z - F)^ + S], (27) 

where the sunmiation is over the atoms of only, and if we call the re

duced molecular intensity of alone Mj(s), then the reduced molecular 

intensity for the mixture is 

M(s) = (^ajAjMj)/(%ajAj), (28) 

where each summation is from j = 1 to j = J, and a^ may be set equal to 

unity. For comparison with experiment, this M(s) can then be converted to 

a calculated leveled intensity in the usual^ manner: 

Io(s) = B(RM + 1). (29) 

If the structures of the components are sufficiently well kno^ra that 

reasonably good (s) curves can be computed to start with, and if some 

initial estimate^ of composition is available, then it is possible to 

^Ref. 45 may be consulted for notation not defined here. 

^E. g. j it was convenient to choose to be the principal component 

and set the remaining ay's to zero; this approach would be generally appli

cable in cases of slightly contaminated samples. 
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refine the composition estimate, along with a polynomial representation of 

the background function B(s), with a standard iterative least-squares tech

nique. Such a calculation uses the derivatives 

aio/aSj = BRAj(Mj - M)/([a^A^). (30) 

The number of constants R, a^, ..., a^ ̂  which can be determined in prac

tice is limited to at most the number of resolvable peaks in the experimen

tal radial distribution curve, and may be smaller for reasons of molecular 

symmetry, eto. It was found practicable in this work to fix R at unity; it 

is then acknowledged that the usual few percent variation in R will be 

absorbed as uncertainty in the ay's. 

It was also found that, in case accurate structural parameters were 

not available in advance for all the likely constituents of a given vapor, 

alternate improvement of the composition and then of the structure could be 

continued in a cyclic fashion until self-consistency was reached. 

Conventional radial distribution analysis (45) was also employed, and 

will be mentioned where appropriate. 

Results 

1. First vapors volatilized from Sample la 

Figure 8 shows the leveled experimental intensity and background func

tions obtained from early photographs of the first sample of Substance I. 

Fourier inversion of these data leads to the radial distribution function 

f(r) shown in Fig. 9, which also shows the difference between the experi

mental f(r) and a theoretical function computed from the spectroscopic 

parameters (50,51) for RF monomer. Evidently unassociated HF was the only 
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. Leveled experimental total intensities and background functions for 
vapors volatilized early from Substance I. Solid and dashed curves 
refer to Samples la and lb, respectively. All intensity data shotfn 
here and in subsequent figures were leveled and corrected for sec
tor imperfections as described in Ref. 45, but have not been other
wise smoothed or adjusted. 
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Fig. 9. Radial distribution function for Substance I in early stages of 
distillation 
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detectable vapor entering the diffraction chamber during the first la 

exposures. 

2. Later stages of la distillation 

After a switch to an all-Kel-F sample injection system, excepting only 

a platinum nozzle tip. Sample la gave the diffraction patterns depicted in 

Fig. 10. The corresponding experimental f(r) is shown in Fig. 11, along 

with the mismatch between the experimental curve and à theoretical f(r) 

computed for the mixture NO + NO^ + 12.6HF. At room temp, and 1 atm, NgO^ 

is only about 10% associated (58). The total pressure in this experiment 

was less than 84 torr, so it is adequate to regard NgO^ as being dissoci

ated into NO + NO^ for purposes of computing theoretical diffraction 

patterns. , 

The experimental f(r) curve could not be fitted with a model mixing 

NOF with HF, even if a severe distortion of the NOF molecule were postu

lated. Except for the small shoulder at r = 2.5 A, there is no evidence of 

a peak in the range 2.3 < r < 3.5 Â which could correspond to a hydrogen-

bonded distance and hence indicate the existence of a complex species. The 

shoulder at 2.5 A is much too small to indicate appreciable complexing, and 

is probably due to self-association of the HF, whose partial pressure over 

the liquid may be estimated as about 72 torr. These data therefore lead to 

the conclusion that not only is this material (I) not a complex species 

which maintains its integrity in the vapor phase, it does not even appear 

to contain NOF in appreciable amounts. It is, rather, an NgO^ + 12.6HF 

azeotrope, as was also found by Siegel. 
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Experimental intensities for Substance I in later stages of 
distillation. Solid and dashed curves refer to Samples la and 
lb, respectively. 
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Fig. 11. Radial distribution function for later vapors from Substance I. 
Subtraction of a theoretical function calculated for the simple 
mixture NO + NO^ + 12.6HF leaves the residual curve shown as Af(r) 

These results are from Sample la. 
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3. Sample lb 

Independent verification of the above results was obtained by repeat

ing the entire series of experiments starting with a fresh sample and 

avoiding possibly reactive container materials. Leveled intensities from 

early and from later plates taken with the second sample appear in Figs. 8 

and 10, respectively. In each case, the molecular patterns can be seen by 

inspection to be essentially the same as in the analogous data from la; 

only the background functions are slightly different. Decomposition of the 

NOF-HF complex by reaction with the container walls is therefore not the 

explanation for the fact that the diffraction pattern changes as sample 

volatilization progresses nor for the fact that evidence for complex spe

cies was not found. 

4. First sample of Substance II 

Leveled intensities for Sample Ila are compared with the later la data 

in Fig. 12. It is evident that again the results are for a mixture of 

nitrogen oxides with HF in approximately the same proportions found in the 

case of Substance I. 

5. Second sample of Substance II 

Experimental difficulties resulted in the expenditure of perhaps 20% 

of the second sample (lib) before usable plates were obtained. The oppor

tunity to reproduce the results of the preceding paragraph was therefore 

missed. Data obtained for the remaining portion of lib, however, are de

picted in Fig. 12; curves for the three apparatus configurations used are 

numbered to show the temporal order in which the data were taken. It is 
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Fig. 12. Experimental intensities for Substance II. 
The dashed curves are late la data from Fig. 10 included for comparison with Ila 
intensities. Note variation with extent of distillation from a pattern resembling 
the Substance I dashed curve toward the Substance III pattern of Fig. 13. 
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clear^ that the pattern was changing as evaporation of the sample into the 

diffraction chamber progressed. Such behavior itself is not unexpected of 

an azeotrope being redistilled at reduced pressure and temperature. 

It is possible to follow the changing composition of the vapor by fit

ting the leveled intensity curves individually. Curve #1 bears a strong 

resemblance to the pure HF data of Fig. 8; there are also visible, however, 

a few small ripples superimposed. Indeed, a good fit to this curve is 

obtained with the theoretical model NOF + 27.4HF. A less satisfactory fit, 

with rms deviation 3.4 parts per thousand vs. 2.5 for the foregoing model, 

was obtained using dissociated for the minor component instead of NOF. 

The experimental data do not contain enough detail to justify the use of 

both NOF and NgO^ in the model. 

In #2 and #3 the features of shorter period are more pronounced, indi

cating a larger ratio of NOF to HF; these two curves together are fitted 

satisfactorily using a mixture of averaged composition 0.12(NO + NOg) + 

6.6HF + NOF. 

The e. d. data imply, then, that Substance II is an azeotrope of NOF 

and HF in the approximate composition indicated by the formula NOF(HF)g, 

but containing also a little NgO^ (af. Fig. 7). Vacuum distillation re

sults in preferential loss of HF, accompanied at first (Ila) by N^O^ in 

amounts such that essentially Substance I is obtained. Under continued 

pumping, the sample next (lib, #1) loses HF along with less than 1/25 mole 

of NOF per mole of HF. As vaporization continues further (lib, #2,3), NOF 

^Note, for example, that at q = 28, a maximum in #1 coincides with a 
minimum in #2. 
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continues to distill with a decreasing relative amount of HF, plus perhaps 

0.1 mole of NgOg per mole of NOF. 

6. Substance III 

Intensity results for III are shown in Fig. 13; the experimental f(r) 

curve is plotted in Fig. 14. Figure 14 also shows that a theoretical 

function for the mixture 0.12(NO + NOg) + 2.15HF + NOF is decidedly better 

than that calculated for NOF + 2.5HF. Here it is again easily seen that 

there appears no evidence, as peaks in the hydrogen-bonded distance region 

from 2.3 to 3.5 A, for the existence of any new complex molecules. 

The sample of Substance III, expected to be a vacuum distillate ob

tained after loss of HF from II, evidently was just that: The composition 

of the samples Ila and lib, it was shown above, appeared to be changing in 

the direction of the composition found for III. 

Structural parameters available from the literature (59-62) for NOF 

are less precise than those for HF, NO, and NO^ (51,63,64). It is possi

ble to get structural information for this compound from the data of Figs. 

13 and 14; it is a major constituent in Substance III. However, the 0=N 

and N-F f(r) peaks are overlapped by the HF and NO peaks of the other com

ponents. Because the composition is also an unknown in the experiment, 

the structure parameters derived from these data have larger uncertainties 

than usual. The diffraction data do not disagree with the microwave re-

su].ts, but they are probably no more accurate, either: Refer to Table 6. 

Discussion 

The e. d. results for samples reported to be NOF(HF)^, NOF^HF)^, and 
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Fig. 13. Experimental intensities and background functions for Substance III 
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Fig. 14. Comparison of experimental f(r) for Substance III with functions 
calculated for NOP + 2.5HF (dashed curve, top) and for 0.12(NO + 
NOg) + 2.15HF + NOF (dashed curve, bottom) 
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Table 6. Internuclear distances in nitrosyl fluoride 

Distance Electron diffraction^ Microwave^ 

0=N 1.14±.01 A 1.13 A 

N-F 1.51±.01 A 1.52 A 

0«'«F 2.18±.01 A 2.18 A 

^Values are r^Cl) parameters, in the notation of Réf. 50. 

\efs. 59,60. 

N0F(HF)2 ^ are on every point in accord with observations made by Siegel; 

his description of these materials as azeotropic mixtures is confirmed. 

The time required for a molecule to reach the electron beam after 

exiting the nozzle orifice into the diffraction chamber is estimated to be 

of the order of 1 ysec for the present experiments. HF polymers are easily 

detectable under comparable conditions (10), and it does not seem probable 

that true complexes stable enough to undergo distillation unchanged would 

be so much more labile than HF in a vacuum that they would escape detection 

in the present experiments. 

The diffraction results, of course, pertain only to the vapor phase, 

and do not detract from the interesting properties possessed by the liquids 

as highly associated, potentially useful fluorochemical solvent-reagent 

systems, nor do they shed any light on the strong intermolecular interac

tions which seem to be indicated by the observed large departures from 

Raoult's law: Compare 68° and 95° with the HF, and NOF boiling 

points 19.54, 3.5, and -50 "C," respectively. 
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It seems likely that the chemical reactions formulated in terms of 

NOF(HF)^ complexes by Seel, Birnkraut, and Werner (55) can for the most 

part be rewritten as reactions of the constituents NOF, HF, and NgO^, al

though solvation effects by molecules not actually reacting may of course 

be important. 

As an analytical tool, electron diffraction is yet too cumbersome for 

routine use. The experience of this study shows, however, that the tech

nique is capable, in favorable cases, of being sensitive to rather subtle 

structural features while serving simultaneously to yield chemical analyses 

of mixed vapors. This capability may prove to be invaluable in future in

vestigations. 
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NOTES ON PHOTOGRAPHIC-MICRODENSITOMETRIC 

MEASUREMENT OF ELECTRON INTENSITIES 

Introduction 

Commercially available equipment for the direct digital measurement of 

photocurrents presently enables workers in gas electron diffraction to 

rapidly make optical density measurements with better than 0.1% precision 

(65,66). The photometric apparatus in this laboratory has recently been 

updated to take advantage of the improved reliability, linearity, stability, 

and response speed offered by such equipment. It seems worthwhile to 

summarize some of the performance characteristics of the system^ with which 

over-all microphotometric precision of a few hundredths of one percent is 

routinely achieved in our diffraction studies, and to comment on some 

implications thereof. 

Accurate characterization of slight nonlinearity in the response of 

photographic emulsions to exposure with fast electrons has remained a 

problem lacking a wholly satisfactory solution. Some of the difficulties in 

calibrating emulsions can be overcome and usable results obtained by a 

method the principal feature of which is a refined computational procedure 

for analysis of calibration data. Recent experience in applying this 

method toward solution of the emulsion calibration problem deserves a few 

remarks. 

^Similar systems are also in use elsewhere; a typical description 
appears in Ref. 66. 
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Microphotometer Performance 

1. Apparatus contribution to random noise level 

Standard random errors representing the practical limits of precision 

attainable with the present hardware, meaning microphotometer plus photo

graphic plate, were empirically determined for various optical densities in 

the range from 0.075 to 1.9. Transmitted light readings were taken using a 

plate^ mounted as usual in the microphotometer and spinning at 3.00 rps 

about the center of its diffraction pattern. Such data were recorded for a 

particular density with the optical system slit stationary at a fixed 

distance from, and always on the same side of, the spinning plate's center. 

Any reproducibility-degrading effects which might be due ordinarily to 

irregular motion of the plate as it is translated past the slit in the 

scanning process or to error in locating the center of rotation as a bench 

mark on the instrument's distance scale were therefore absent. Effects of 

any appreciable drift in the light source intensity or detection circuitry 

were also excluded by taking readings in sets, each set within a time 

period short in comparison to the drift rate of the instrument. ' The 

results obtained therefore express only the optimum reproducibility of a 

single density measurement made at a fixed radius on a spinning plate. 

The relative uncertainty ôD/D in an optical density value 

D = log (V^ - Vg) - log (V - VQ) (31) 

is easily obtained by a conventional differential error computation as a 

function of the uncertainties in the three measured quantités VQ, and 

^All results reported in this chapter refer to Kodak Process Plates 
developed in Kodak D-11. 
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V, which are voltages proportional to photocurrents obtained, respectively, 

at full-scale lamp intensity, with shutter closed, and with the absorbing 

medium of interest positioned in the light beam. The relevant expressions 

are 

(5D)2 = (ÔV^3D/3V^)^ + (6V9D/9V)2 + (ôVQ9D/9Vg)_ (32) 

6D/D = D~^log e{[ÔV^/(V^ - V^)]^ + [6V/(V - VQ)]^ 
+ (6Vq)^[1/(V^ - VQ) - 1/(V - VQ)]^}^, (33) 

and 

(6V^)2 = [J(V. - n"^);v.)^]/[m.(n - 1)] i = 0,1. (34) 

Replicate (n = 11) 10-second voltage readings were taken with the shutter 

closed and with the beam unobstructed by the plate; these readings were 

2 2 
used to estimate the variances (ÔV^) and (6V^) using Eq. 34 with m^ = 

2 
= 1. Variances (6V) in V(T) were similarly determined at various 

values of the transmission 

T = (V - Vq)/(V^ - VQ) (35) 

using both 10-second and 1-second counting periods. Values of 5D/D based 

on these observed variances were calculated according to Eq. 33 and the 

results are depicted in Fig. 15. The computations were repeated with m^ = 

= n to take account of the fact that in the normal operation of the 

instrument, V^ and V^ can conveniently be taken as means of several 

observations, so their uncertainties are correspondingly reduced. This 

second set of calculations gives results (Fig. 16) which are predictably 

somewhat below those of the m^ = m^ = 1 case when the counting time is 10 

sec; the differences are insignificant for V(T) counting times of 1 sec 

2 
because the dominant contribution to 6D/D then comes from (ôV) . The 
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Fig. 15. Optimum relative error of optical density measurements with 
mo = m^ = 1 



www.manaraa.com

83 

0.030 -

h0.025 
z 

%.020 
cc 
LU 

-̂0.015 
Û 

S 0.010 

0.005 -

0.01-

10 SEC 

oo o 

04 0.8 1.2 1.6 
D, OPTICAL DENSITY UNITS 



www.manaraa.com

Fig. 16. Optimum relative error of optical density measurements with 
= m^ = 11. The continuous curve is a plot of the function 

(log e)(-10"4/e)/(Tlog T). 
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experimental results resemble the theoretical (67) error curve 

6D/D = (log e)6T/(Tlog T) (36) 

reckoned with 6T a constant: A plot of this function, with scale arbi-

-4 , 
trarily fixed by taking 6T as -10 /e, is included in the bottom half of 

Fig. 16 for comparison. 

Of the four sets of results depicted in Figs. 15 and 16, the last is 

of principal interest here because it most nearly represents a standard 

operating procedure whereby a series of plates can be read àt 1/8-mra 

intervals in a total time averaging 20 minutes per plate, not counting 

instrument warmup. The optimum working density range is evidently from 

roughly 0.3 to about 1.0, but it may be noted that densities as great as 

2.0 are measureable with better than 0.1% precision. 

If it may be assumed that Kodak Process Plates are no slower than 

Kodak Electron Image Plates, for which absolute sensitivity data are 

readily available (68, p. 12d), then the microphotometric precision indi

cated by the results in Figs. 15 and 16 approaches the statistical uncer

tainty of counting the number of electrons falling in the plate area 

scanned by the microphotometer slit during a typical reading. For a 

g 
counting standard deviation of 0.01%, 10 electrons are necessary. A 

density of 1.0 in a circular band of width 90 y and radius 44 mm would 

g 
represent just 1.2(10 ) electrons at an absolute emulsion sensitivity of 

2 
0.2 density unit-p /electron. The statement by Morino, st ai. (65) that 

the ultimate accuracy of photographic electron intensity detection appears 

not very distant from present levels therefore seems to be in order. 

The advantage gained in the averaging process which is accomplished by 

spinning the plates can be appreciated by comparing the indicated precision 
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of near 0.01% with Kodak's specification of the Process Plates' rms 

granularity as 1.4% (68, p. lid). 

2. Reproducibility under normal operating conditions 

In addition to short-term random noise of the sort discussed in the 

preceding subsection, there are contributions of at least two other kinds 

to the microphotometric uncertainty as measured by a(D).^ The first kind 

may be described as errors due directly to circuit lag and hysteresis, plus 

whatever intermediate-term meandering occurs about the linear, long-term ° 

course of drift for which a correction is made. The second kind may be 

classed as plate-positioning errors, whose contribution to a(D) is of 

course magnified to the extent that instrumental characteristics responsi

ble for errors of the first kind can also introduce a systematic left-right 

difference by interfering with accurate location of the center of rotation 

of a spinning plate.^ Before the most recent alterations in the equipment 

used in this laboratory, the combined effect of these contributions 

resulted in a(D) values approximately an order of magnitude larger (34, pp. 

9,11; 35, p. 22) than the 6D/D results indicated in the bottom half of Fig. 

16. With the present system, plate centers can be located to within 1 y, 

which is of the order of 1% of the effective width of the scanning slit, 

and it is encouraging to note that the routine plate scanning process now 

gives duplicate density values which indicate reproducibility^ comparable 

^Refer to Eq. 23 on p. 31. 

^Averaging of data from the two sides of a plate effectively cancels 
this systematic error from the final density results. 

5See, for example, the a(D) values for -19° HF in Table 4 on p. 29. 
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with the optimums depicted in Fig. 16. It seems reasonable to conclude 

that noise contributions from plate-positioning errors and the various 

instrumental nonlinearities can be routinely held to negligible levels and 

that precision of the over-all densitometric procedure is now nearly all 

that can be justified within the limits of electron counting statistics. 

It also seems clear that plate-to-plate variations in recorded diffraction 

pattern shape are presently a source of significantly more statistical 

uncertainty than is the microphotometric measurement process. 

Emulsion Calibration 

1. Gross fog 

The sensitivity of Kodak Process Plates has been found (41,43,44) to 

increase centrifugally beginning at about 24 mm from the center of a plate. 

The increase varies among individual plates, but typically amounts to about 

5% near the outer edge (39). Gross fog (68, p. 5) data obtained from 

several plates developed without ever having been exposed suggest that the 

explanation for this "edge effect" (41) may be in part that sensitized 

material is more densely applied to the plates near the edges. Gross fog G, 

as a function of distance from the plate center, has invariably been found 

to increase on unexposed plates by an amount between 0.001 and 0.003 

density units. Data for a typical sample are plotted in Fig. 17. This 

observation is compatible with the hypothesis that are thicker near plate 

edges, although possible effects of nonuniform development or of absorbed 

moisture have not been evaluated in connection with the edge effect. 

Tlie total optical density , including gross fog, of an ideal 
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Fig. 17. Gross fog as a function of distance from the center for a typical Kodak Process Plate 
developed in Kodak D-11 
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uniformly exposed plate should be given by 

= G° + D, (37) 

where D is the image density, or net darkening due to exposure, of interest 

and G° is a constant usually between 0.035 and 0.055. Actually, the total 

may be written as 

^actual ̂  (37') 

where G" is the gross fog in the central area of the plate wherein emulsion 

sensitivity may be regarded as constant, and p ' and p are functions of 

plate radial coordinate y. The data of Fig. 17, for example, where D = 0, 

suggest G° = 0.04134 and 

p„ = 1 y < 24 mm 

• ' (38) 

- 1 + 1.49(10 ^)(y - 24)^ y > 24 mm. 

In practice the function p(y) defined as (D^ - G°)/D can be conveniently 

observed (39) using uniformly exposed plates, on each of which the cor

rected image density is know to be a constant D = D° - G°, where the 

superscript zeros refer to the central uniformly-sensitive region of a 

plate. Corrected image densities of working plates are thereafter taken as 

D = (D^ - G°)/p. (39) 

For practical purposes the difference (G°/D)(p - 1) between p and p is 
J-

less than the uncertainty with which p itself is established. Furthermore, 

data for a single uniformly exposed plate cannot be separated into G°Pg 

and Dpj. components, and variation of G = G°Pg curves among unexposed plates 

is sufficient that such curves are not transferable with enough confidence 

to make worthwhile the attempted use of the- more rigorous correction scheme 

D = (D^ - G°pg)/p; (39') 
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in place of the simpler scheme outlined above. 

2. Density-exposure calibration 

A procedure used by Bartell and Brockway (69) to calibrate the depend

ence of optical density D on electron exposure E led to expression of the 

ratio E/D as a function 

F(D) = 1 + cD. (40) 

A value near 0.3 was indicated (69) for the constant c in the case of 

Eastman Contrast Lantern Slide Plates. Controversy (70,71) over the = 

validity of this result for the region of densities less than about 0.5 

went partially unresolved because of experimental limitations: Density and 

exposure data with very small uncertainties are necessary for accurate 

assessment of small deviations from linearity in the emulsion response. 

Indications were subsequently obtained by a different calibration procedure 

(33, Footnote 5) that the nonlinearity of Kodak Process Plates was even 

smaller, corresponding to c = 0.05 ± 0.01 in the above expression for F(D). 

Inconsistent results were obtained (72, Footnote 6; 73) in attempts to 

verify this result for low densities by the earlier method (69) of calibra

tion. Kimura and Kimura (74), meanwhile, developed a procedure which, when 

applied to Fuji Process Hard Plates, yielded a calibration which is shown 

in Fig. 18. For the most part {i,. e. , for 0.22 < D < 1.00) this function 

lies between the lines F(D) = 1 -I- 0.05D ( ) and F(D) = 1 -h 0.3D 

( ), and is plausible in that respect. It is not to be presumed valid 

for densities above 0.74 (dashed portion in Fig. 18), which is the upper 

limit of density data from which the curve was derived,. The form of the 

Kimura function is of doubtful utility for an extended density range, 
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Fig. 18. Comparison of emulsion calibration functions. 
( ) Eastman Contrast Lantern Slide Plates, Ref. 69 
( ) Kodak Process Plates, Ref. 33 
( ) Fuji Process Hard Plates, Ref. 74; dashed portion is 
extrapolation 
( ) Kodak Process Plates, this work 
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because the implied density correction increases very rapidly with density 

above 1.0. Early attempts in this laboratory to adapt the direct least-

squares method of analysis to Kodak Process Plate data covering a wide 

range of densities failed because of the same experimental limitations 

encountered in applying the method of Bartell and Brockway to the same 

data. Workable results, however, have been obtained in the investigation 

to be outlined below, in which a new computer program, incorporating 

methods devised to circumvent the calibration difficulties encountered 

previously, was developed for treating calibration data. 

The method used here depends on the same essential assumption of 

exposure pattern similarity for replicate plates taken under experimental 

conditions identical except for varying exposure duration relied upon by 

others (69,74,75). Direct nonlinear least-squares optimization of the 

constant parameters of a calibration function, as suggested by Kimura and 

Kimura (74), avoids the possible accumulation of errors which they mention 

and is a more straightforward method than that of Ref. 69. More important

ly, it is also more readily adaptable and convenient to use in experimen

tation with various mathematical models, and was therefore adopted in the 

present study. 

Suppose there are documented as functions of plate radial coordinate y 

the optical density patterns D^(y) and [^(y) for two electron diffraction 

plates 1 and 2 taken under identical circumstances, except that the expo

sure time for plate 2 is appreciably less than that for plate 1, so that 

the observable density ratio function 

Q(y) = D2(y)/D^(y) (41) 
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is everywhere significantly less than unity. If the corresponding exposure 

patterns are E^(y) and EgCy), then the ratio 

Qg = E2(y)/E^(y) (42) 

should be a constant equal to the ratio of the exposure times. It is 

therefore assumed that there is some function e(D) of density which involves 

a set a of constant parameters 0^,02,and which gives the exposure: 

E(y) = £[D(y)]. (43) 

It should then be possible to determine the elements of a by minimizing the 

quantity 

s i t )  = ^{[e(D2)/e(D^)] - (44) 

with respect to the calibration constants a^,a2>.»» using a Gauss-Newton 

least squares technique, once an appropriate functional form is chosen for 

e. In practice, there are several additional considerations which enter 

into a successful determination of a calibration curve. 

First, even though exposure times can be measured with six-figure 

precision, the value of the true exposure ratio is not known with 

corresponding accuracy because both the electron beam intensity and concen

tration of scattering material can fluctuate during and between exposures. 

Without accurate experimental knowledge of the exposure ratio, therefore, 

it is necessary to allow the constant to vary in the least-squares 

iteration process along with the elements of a. This constant interacts to 

some extent with the other variables in the minimization of s(a) because 

the exact form of the function e is not known. The determination of the 

constants of e is therefore uncertain to the extent that the ratio 

G(D2)/c(D^) is being fitted to an incorrect Q^. 
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If the emulsions are indeed not very seriously nonlinear in the region 

of small D, and if saturation (69) or coincidence losses are responsible 

for whatever nonlinearity appears at higher D values, then the function e 

ought to be such that it meets the following criterion in order to be 

considered acceptable: 

(a) F(D) 5 £(D)/D should be a rather mild, smooth, nondecreasing 

function of D such that lim F(D) = b, where b is an arbitrary scale 
D-̂ 0+ 

factor which is always taken as unity. 

The condition (a) on e leads for the observable density ratio curves Q(D^) 

to the additional expectations that: 

(b) Q(D^) should also be a mild, smooth, nondecreasing function 

of D^; 

and 

(c) lim Q(D ) = Q , 
D̂ 0̂+  ̂ G 

Q(D^) data covering an adequate range of were obtained for this 

study, as in Ref. 69, using a quadratic sector which gave patterns similar 

to those used by Bartell and Brockway (69, Fig. 1). It proved easy to get 

smooth, reproducible Q(D^) curves with only the residual gas at a steady-

state pressure reached after prolonged pumping as the scattering material in 

the diffraction chamber. Density data were taken from within 30 mm of plate 

centers to avoid complications due to the edge effect discussed earlier. 

The role of gross fog, however, was found to be critical in determining the 

shape of experimental Q curves, and small errors AG in G are sufficient to 

cause density ratio observations to fail to satisfy (b) and (c) above. 

Subtraction from a total density a gross fog value G which is in error by 
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an amount AG leads to an observed ratio curve 

Q(Dj,) = [D(y) + AGlg/EDCy) + AG]^ (45) 

which is dominated at small values of by the ratio (AG)2/(AG)not by 

Qg. The usual method of determining G, which consists of reading full-

scale lamp intensity through a clear portion near the edge of a plate, may 

be expected to result in a nonzero error® AG of this sort, as can be seen 

from the place-to-place variation of G on a single unexposed plate typified 

by the data of Fig. 17. ° 

This state of affairs can be taken into account by modifying the least-

squares calculation to give minimization of 

s(a) = I{[e(D^ - G)2/E(D^ - G)^] - (44') 

with respect to a, G, and Q . Output values of G can then be checked for 

plausibility by seeing whether or not they fall in the known usual range, 

from 0.035 to 0.055. In practice the least-squares calculation may not 

converge if G is allowed to vary independently for each plate. Satisfactory 

results have nevertheless been obtained by assuming that G is the same for 

all plates in a set, and they suggest that the assumption is within reason. 

Results were derived using 

e(D) = D + aD^ (22') 

for the functional form of e. This is the simplest form which satisfies 

(a) and is such that F(D) has zero slope at D = 0, as proposed by Karle and 

Karle (70). A computer program for minimizing s(a) using data from up to 

five plates at a time (i. e. , varying four Q values and one G value 
£ 

^This small additive error, which has strong influence in emulsion 
calibration work, is of essentially no consequence in routine measurements 
of molecular scattering features. 
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simultaneously) was used to analyze data which were split into tifo sets 

from one group of five plates and a third set of data from an additional 

pair of plates. The data included densities from 0.10 to 1.7. 

Values of a obtained were O.O463 from the paired plates, and 0.051^ 

and 0.0500 from the five. The degree of reproducibility here is good, and 

the function 

= e(D) = D + 0.05D^ (22) 

satisfies (a), p. 97. Reasonable Q and G values were also obtined, and 
h 

in cross-checking it was verified that the G's could be used to reconstruct 

image density ratio curves satisfying (b) and (c). Residual rms noise 

results, proportional to were comparable with the level of repro

ducibility usually obtainable in D^(y) patterns on replicate plates taken 

with identical exposure times. 

2 
Calculations made to test the alternative model (33,69) e(D) = D + cD 

corresponding to Eq. 40 resulted in /s^^^ values two to three times larger 

3 
than did the D + aD trials, although for ot and c near 0.05 the difference 

in density corrections implied by these two alternatives hardly matters. 

On the basis of the results derived, it is believed that for 0 < D 

2 
< 1.5 the function F(D) = 1 + 0.05D represents the response of Kodak 

Process Plate emulsions to exposure with 40 kV electrons about as well as 

can be ascertained using data presently available. Conclusive confirmation 

of this result would require data in which the uncertainties of and G 

did not exist so that these quantities could be held fixed in the least-

squares computation. The general method of analysis itself, however, 

should be applicable to such improved data, and the results already ob



www.manaraa.com

100 

tained make it seem unlikely that further investigation should yield 

emulsion calibration functions grossly different? from Eq. 22 for Process 

Plates given comparable exposure and development. 

?One possible improvement might be to take 
JFCD) = D D £ d 

[ = D + a(D - d)^ D > d, 
where d is some optimally chosen constant value, probably between 0.4 and 
0.9. This possibility has not been investigated here. 
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